Cryptochrome-dependent and -independent circadian entrainment circuits in Drosophila.

نویسندگان

  • Taishi Yoshii
  • Christiane Hermann-Luibl
  • Christa Kistenpfennig
  • Benjamin Schmid
  • Kenji Tomioka
  • Charlotte Helfrich-Förster
چکیده

Entrainment to environmental light/dark (LD) cycles is a central function of circadian clocks. In Drosophila, entrainment is achieved by Cryptochrome (CRY) and input from the visual system. During activation by brief light pulses, CRY triggers the degradation of TIMELESS and subsequent shift in circadian phase. This is less important for LD entrainment, leading to questions regarding light input circuits and mechanisms from the visual system. Recent studies show that different subsets of brain pacemaker clock neurons, the morning (M) and evening (E) oscillators, have distinct functions in light entrainment. However, the role of CRY in M and E oscillators for entrainment to LD cycles is unknown. Here, we address this question by selectively expressing CRY in different subsets of clock neurons in a cry-null (cry(0)) mutant background. We were able to rescue the light entrainment deficits of cry(0) mutants by expressing CRY in E oscillators but not in any other clock neurons. Par domain protein 1 molecular oscillations in the E, but not M, cells of cry(0) mutants still responded to the LD phase delay. This residual light response was stemming from the visual system because it disappeared when all external photoreceptors were ablated genetically. We concluded that the E oscillators are the targets of light input via CRY and the visual system and are required for normal light entrainment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Circadian clocks: A cry in the dark?

Cryptochrome proteins are key components of the circadian systems of both Drosophila and mammals. In Drosophila, they appear to be responsible for the entrainment of the circadian clock by the light-dark cycle, while in mammals they perform an important role in rhythm generation itself.

متن کامل

Human Cryptochrome-1 Confers Light Independent Biological Activity in Transgenic Drosophila Correlated with Flavin Radical Stability

Cryptochromes are conserved flavoprotein receptors found throughout the biological kingdom with diversified roles in plant development and entrainment of the circadian clock in animals. Light perception is proposed to occur through flavin radical formation that correlates with biological activity in vivo in both plants and Drosophila. By contrast, mammalian (Type II) cryptochromes regulate the ...

متن کامل

An extraretinally expressed insect cryptochrome with similarity to the blue light photoreceptors of mammals and plants.

Photic entrainment of insect circadian rhythms can occur through either extraretinal (brain) or retinal photoreceptors, which mediate sensitivity to blue light or longer wavelengths, respectively. Although visual transduction processes are well understood in the insect retina, almost nothing is known about the extraretinal blue light photoreceptor of insects. We now have identified and characte...

متن کامل

Serotonin Modulates Circadian Entrainment in Drosophila

Entrainment of the Drosophila circadian clock to light involves the light-induced degradation of the clock protein timeless (TIM). We show here that this entrainment mechanism is inhibited by serotonin, acting through the Drosophila serotonin receptor 1B (d5-HT1B). d5-HT1B is expressed in clock neurons, and alterations of its levels affect molecular and behavioral responses of the clock to ligh...

متن کامل

Cryptochrome, compound eyes, Hofbauer-Buchner eyelets, and ocelli play different roles in the entrainment and masking pathway of the locomotor activity rhythm in the fruit fly Drosophila melanogaster.

The fly Drosophila melanogaster possesses five photoreceptors and/or photopigments that appear to be involved in light reception and synchronization of the circadian clock: (1) the compound eyes, (2) the ocelli, (3) the Hofbauer-Buchner eyelets, (4) the blue-light photopigment cryptochrome, and (5) unknown photopigments in the clock-gene-expressing dorsal neurons. To understand the contribution...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 35 15  شماره 

صفحات  -

تاریخ انتشار 2015